Performance Evaluation of Large-Scale Parallel Clustering in NOW Environments
نویسندگان
چکیده
This paper presents the results of a performance study of parallel data clustering on Network of Workstations (NOW) platforms. The clustering program, P-CLUSTER, is based on the mean square-error clustering algorithm and is applied to the problem of image segmentation. The parallel implementation uses a client-server model, in which the clustering task is divided among a set of clients that report their intermediate results to a single server process. Results of experiments on four NOW platforms are presented, illustrating the eeects on performance of diierent processors, network architectures, communication packages, and latency hiding techniques.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملEvaluation of Updating Methods in Building Blocks Dataset
With the increasing use of spatial data in daily life, the production of this data from diverse information sources with different precision and scales has grown widely. Generating new data requires a great deal of time and money. Therefore, one solution is to reduce costs is to update the old data at different scales using new data (produced on a similar scale). One approach to updating data i...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملHeuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997